The Gypsum Cycle |
Gypsum is a naturally occurring stone, a metallic salt of calcium. It commonly forms as an evaporite from the dissolution of limestone by exposure to sulphuric acid from volcanic activity. Under certain conditions, continual cycles of dissolution and evaporation will agglomerate into a “primary” deposit of gypsum.
Mineral gypsum so formed is interspersed among other minerals. Primary deposit gypsums are characterized by a loose crystalline structure and high solubility in water. Over geologic time gypsum from primary deposits is often carried away in solution, forming a “secondary” deposit of a much purer gypsum. These secondary deposits or “massifs” can be tens of feet thick, forming extended beds. Massifs are the primary source exploited as raw material for gypsum plaster.
Chemistry & Manufacture
Selenite: crystallized form of gypsum |
Unlike clay, mineral gypsum must be baked in preparation for
its use as a plaster. Fortunately, this occurs at a relatively low temperature
so is not an energy intensive process. Gypsum rock can be efficiently baked at
temperatures as low as 300° F. At this temperature gypsum quickly loses 75% of
its water content, off-gassing steam. The resulting material has the chemical
formula calcium sulphate hemi-hydrate or CaSO4·½H2O.
Commonly known as Plaster of Paris, this is the most prevalent form of gypsum
used for plasters.
In the 19th century it was discovered that gypsum baked
under increased atmospheric pressure in a barometric chamber would result in
dense plasters, having less water demand. These “gypsum cements” require less
water to mix and manifest a distinct crystallization pattern that produces
dense, hard sets very useful in casting work. Anhydrous gypsum is another form
of gypsum stone that occurs naturally or can be manufactured by continuing to
bake the hydrous form over a temperature of 800° F, producing calcium sulphate
or CaSO4. This anhydrous or “dead burnt” gypsum, sometimes with a
small addition of alum, is characterized by a slower set and dense
crystallization useful for floor, exterior and other specialty applications
such as scagliola.
Properties & Specifications
Modeling and casting ornament with gypsum |
Historically gypsum plasters have been used primarily for interiors. Although all natural plasters are incombustible, gypsum is practically miraculous in its inherent capacity to actively retard fire. This is due to its hydrous chemistry. Should a fire occur in one room, gypsum will continue to off-gas steam, thus suppressing the temperature on the other side of the wall well below the temperature needed for spontaneous combustion. This arrests the ability of the fire to spread, starving it of needed oxygen.
Although Plaster of Paris produces a plaster far too porous and soluble for exteriors and gypsum cements are simply not practical to use as a wall plaster, there is a long history of exterior stuccoes in Europe based on anhydrous gypsum. Similar to earthen renders, reasonable precautions need to be taken with overhangs and other flashing details to ensure protection from streaming water as well as establishing water tables to prevent capillary water rise.
Nevertheless, the self-binding nature of the material itself allows a great range of technical and aesthetic freedom. Gypsum stuccoes are very manageable to work as a wall plaster and can be applied up to an inch or more in a single coat. They have a rapid set that permits working in almost any season so long as there is a brief window of good weather. Furthermore, molding profiles can be run in situ, ornamentation can be cast and affixed and a practically unlimited variety of aggregates can be added for simply decorative effect.
In our next essay we’ll begin taking a closer examination of the family of lime binders, materials intimately associated with civilization itself.
Contributed by Patrick Webb
Although Plaster of Paris produces a plaster far too porous and soluble for exteriors and gypsum cements are simply not practical to use as a wall plaster, there is a long history of exterior stuccoes in Europe based on anhydrous gypsum. Similar to earthen renders, reasonable precautions need to be taken with overhangs and other flashing details to ensure protection from streaming water as well as establishing water tables to prevent capillary water rise.
Running in situ, courtesy of Plâtres Vieujot |
Nevertheless, the self-binding nature of the material itself allows a great range of technical and aesthetic freedom. Gypsum stuccoes are very manageable to work as a wall plaster and can be applied up to an inch or more in a single coat. They have a rapid set that permits working in almost any season so long as there is a brief window of good weather. Furthermore, molding profiles can be run in situ, ornamentation can be cast and affixed and a practically unlimited variety of aggregates can be added for simply decorative effect.
In our next essay we’ll begin taking a closer examination of the family of lime binders, materials intimately associated with civilization itself.
Contributed by Patrick Webb
Excellent post keep it up and share more.
ReplyDelete